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presence of a boundary

By G. M. R E Z N I K1 AND R. G R I M S H A W2

1P. P. Shirshov Institute of Oceanology, Moscow, Russia
2Department of Mathematical Sciences, Loughborough University,

Leicestershire LE11 3TU, UK

(Received 18 December 2001 and in revised form 10 June 2002)

The process of nonlinear geostrophic adjustment in the presence of a boundary (i.e.
in a half-plane bounded by a rigid wall) is examined in the framework of a rotating
shallow water model, using an asymptotic multiple-time-scale theory based on the
assumed smallness of the Rossby number ε. The spatial scale is of the order of the
Rossby scale. Different initial states are considered: periodic, ‘step’-like, and localized.
In all cases the initial perturbation is split in a unique way into slow and fast
components evolving with characteristic time scales f−1 and (εf)−1, respectively. The
slow component is not influenced by the fast one, at least for times t 6 (fε)−1, and
remains close to geostrophic balance. The fast component consists mainly of linear
inertia–gravity waves rapidly propagating outward from the initial disturbance and
Kelvin waves confined near the boundary.

The theory provides simple formulae allowing us to construct the initial profile of
the Kelvin wave, given arbitrary initial conditions. With increasing time, the Kelvin
wave profile gradually distorts due to nonlinear-wave self-interaction, the distortion
being described by the equation of a simple wave. The presence of Kelvin waves
does not prevent the fast–slow splitting, in spite of the fact that the frequency
gap between the Kelvin waves and slow motion is absent. The possibility of such
splitting is explained by the special structure of the Kelvin waves in each case
considered.

The slow motion on time scales t 6 (εf)−1 is governed by the well-known quasi-
geostrophic potential vorticity equation for the elevation. The theory provides an
algorithm to determine initial slow and fast fields, and the boundary conditions to
any order in ε. For the periodic and step-like initial conditions, the slow component
behaves in the usual way, conserving mass, energy and enstrophy. In the case of a
localized initial disturbance the total mass of the lowest-order slow component is
not conserved, and conservation of the total mass is provided by the first-order slow
correction and the Kelvin wave.

On longer time scales t 6 (ε2f)−1 the slow motion obeys the so-called modified
quasi-geostrophic potential vorticity (QGPV) equation. The theory provides initial
and boundary conditions for this equation. This modified equation coincides exactly
with the ‘improved’ QGPV equation, derived by Reznik, Zeitlin & Ben Jelloul (2001),
in the step-like and localized cases. In the periodic case this equation contains an
additional term due to the Kelvin-wave self-interaction, this term depending on the
initial Kelvin wave profile.



258 G. M. Reznik and R. Grimshaw

1. Introduction

Geostrophic adjustment in a rotating fluid is the tendency for the large-scale part
of the initial perturbation to reach a state of geostrophic equilibrium; at the same
time the remaining part, consisting of rapidly propagating inertia–gravity (IG) waves
gradually decays at a fixed space point with increasing time. The study of this process
(playing a very important role in atmospheric and oceanic dynamics) started with
the pioneering work by Rossby (1938). A thorough linear analysis of geostrophic
adjustment has been given in a number of well-known works (e.g. Obukhov 1949;
Monin & Obukhov 1958; Gill 1976). The lowest-order nonlinear corrections were
discussed in the review by Blumen (1972) (where an extensive bibliography of the
early works can be found) and more recently by Dewar & Killworth (1995).

The problem of nonlinear geostrophic adjustment is closely related to the balanced
models which are used to describe the slow (balanced) part of the motion (e.g. Warn
et al. 1995; Medvedev 1997). The fundamental question concerns the possibility of
splitting an arbitrary motion into a slow (balanced) and a fast component in such
a way that the slow component is not influenced by the fast one for long enough
times. Note that the splitting is a more general concept than adjustment, since
splitting is possible when the fast component consists of ‘non-radiating’ oscillations
and permanently co-exists with the slow component, as in the cases of periodic motion
or frontal dynamics. Periodic (in both horizontal directions) motion was examined
by Embid & Majda (1996) and Babin, Mahalov & Nikolaenko (1998a, b) in the
framework of the barotropic rotating shallow water (RSW) model when the relative
elevation and the Rossby number ε are small. It was shown that the resulting field
is split in a unique way into slow and fast components evolving with characteristic
time scales f−1 and (εf)−1, respectively, where f is the Coriolis parameter. The
slow component is not influenced by the fast one and remains close to geostrophic
balance, being governed by the well-known quasi-geostrophic (QG) dynamics. The
fast component is a superposition of IG waves with amplitudes slowly changing in
time due to nonlinear interactions between the waves and slow motion (serving here
as a catalyst).

These results were generalized by Reznik, Zeitlin & Ben Jelloul (2001, hereafter
referred to as RZB) to the case of an arbitrary localized perturbation on an unbounded
plane. The scenario of adjustment depends on the characteristic scale and/or initial
relative elevation of the free surface. For small relative elevations the slow motion
obeys the well-known QG equation for times t 6 (fε)−1 while modifications to
this equation for longer times t 6 (fε2)−1 are found. The fast component consists
mainly of linear IG waves rapidly propagating outward from the initial perturbation;
the nonlinear interaction between these waves and the slow component is of no
importance, unlike the periodic case. For large relative elevations (the frontal dynamics
regime) the slow field is governed by the frontal geostrophic dynamics equation. The
fast component in this case is a spatially localized packet of inertial oscillations
evolving on the background of the slow component of the flow and experiencing slow
modulations obeying a Schrödinger-type equation with coefficients depending on the
slow motion.

The physical reasons for the slow–fast splitting are the Lagrangian conservation of
potential vorticity, the fact that IG waves do not carry the potential vorticity, and
the gap in the spectrum of the small perturbation in the RSW model due to rotation
which, in particular, blocks the Lighthill radiation of IG waves.

The question addressed in this paper is how these results are modified in the
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Figure 1. Schematic representation of geostrophic adjustment in a half-plane bounded by a rigid
wall at y = 0.

presence of a horizontal boundary (see figure 1). This question is clearly of special
interest for oceanographers. An essential new factor absent in unbounded fluid is
the presence of Kelvin waves propagating along the boundaries in the rotating fluid.
Gill (1976) examined the linear geostrophic adjustment of the initial discontinuity in
free-surface height in a channel and revealed that the Kelvin waves play a key role in
establishing the boundary conditions for the resulting geostrophic mode. Hermann,
Rhines & Johnson (1989) investigated further the slow development of this mode,
presuming its evolution to be governed by the usual equation for QG potential
vorticity. Their numerical analysis using primitive RSW equations demonstrated the
suitability of this approach.

In the present work we investigate analytically the influence of the boundaries on
the process of nonlinear geostrophic adjustment. Note that the Kelvin waves can
be of even more importance for the nonlinear adjustment than for the linear one,
since there is no spectral gap between the slow mode and Kelvin waves: these waves
can possess arbitrarily small frequencies. This means that the Lighthill radiation of
the Kelvin waves is possible, at least, in principle. For simplicity we use again the
barotropic RSW model and consider the motion on a half-plane bounded by a rigid
wall. Initial fields can have an arbitrary form but their typical scale should not exceed
the Rossby scale and the Rossby number is assumed to be small. The asymptotic
multiple-time-scale procedure developed in RZB is applied for analysis.

The paper is organized as follows. In § 2 the model is formulated. In § 3 we
examine the lowest-order solution for various initial conditions; the solution obtained
describes the linear geostrophic adjustment of an arbitrary initial field on the half-
plane. Nonlinear dynamics of the lowest-order slow motion is analysed in § 4. The
first-order solution is discussed in § 5; we demonstrate that slow–fast splitting is
possible at higher orders in Rossby number, at least up to terms O(ε2). A modified
quasi-geostrophic potential vorticity equation describing the slow component on time
scales longer than typical geostrophic time scale, for t 6 (fε2)−1, is derived in § 6. A
summary of our results is presented in § 7. The asymptotic behaviour of the lowest- and
first-order fields is considered in Appendices A and B, which are available on request
from the authors, or the Journal of Fluid Mechanics Editorial Office, Cambridge.

2. Model
The RSW model consists of the horizontal momentum and mass conservation

equations for the thin free-surface layer under the influence of the Coriolis force and
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gravity on the rotating plane (x, y):

∂u

∂t
+ ε

(
u
∂u

∂x
+ v

∂u

∂y

)
− v = −∂h

∂x
, (2.1a)

∂v

∂t
+ ε

(
u
∂v

∂x
+ v

∂v

∂y

)
+ u = −∂h

∂y
, (2.1b)

∂h

∂t
+ (1 + εh)

(
∂u

∂x
+
∂v

∂y

)
+ ε

(
u
∂h

∂x
+ v

∂h

∂y

)
= 0, (2.1c)

where v = (u(x, y, t), v(x, y, t)) is the two-dimensional velocity field and H = H0

(1 + εh(x, y, t)) is the free-surface elevation with the rest state corresponding to the
constant H0. Equations (2.1) are written in non-dimensional form, the Rossby scale
Rd =

√
gH0/f and the reciprocal Coriolis parameter f−1 being chosen as the space

and the time scales, respectively; g is the acceleration due to gravity, the parameter
ε = U/fRd is the Rossby number, and U is the horizontal velocity scale.

The fields u, v, h are known at the initial moment,

u = uI (x, y), v = vI (x, y), h = hI (x, y) at t = 0, (2.2)

and obey the no-flux boundary condition on the rigid wall y = 0,

v = 0 at y = 0. (2.3)

The initial fields (2.2) are not entirely arbitrary and satisfy the following conditions
at the wall y = 0:

vI = 0, uI = −∂hI
∂y

at y = 0, (2.4a, b)

to be consistent with equations (2.1b), (2.3).
The vorticity equation follows from (2.1),

∂(ζ − h)
∂t

+ ε

{
∂[u(ζ − h)]

∂x
+
∂[v(ζ − h)]

∂y

}
= 0, (2.5)

ζ =
∂v

∂x
− ∂u

∂y
. (2.6)

It is seen from (2.1), (2.5) that the fields u, v, h on the one hand and the vorticity field
ζ − h on the other hand, are characterized, generally, by different time scales. The
typical time scale of u, v, h is equal to the inertial time Ti = f−1 and ζ − h changes
in time at the advective time scale Ta = Rd/U. The Rossby number ε is the ratio
between these scales,

Ti

Ta
=

U

fRd
= ε. (2.7)

In what follows we assume the advective time scale to be much larger than the inertial
one, which means that the Rossby number is small,

ε� 1. (2.8)

Both the fast changes due to IG wave activity and the slow changes of the vorticity
ζ−h are present in the evolution of the initial field (2.2) and the problem of nonlinear
adjustment is to determine their mutual influence.
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Three types of the initial conditions (uI , vI , hI ) will be considered:
(i) periodic (in x) boundary conditions,

(uI , vI , hI ) =

m=∞∑
m=−∞

(uIm, vIm, hIm) eimx, (2.9a)

where the functions uIm, vIm, hIm depend on y only;
(ii) a zonal ‘step’,

(uI , vI , hI )→ (u(±)
I (y), 0, h(±)

I (y)), x→ ±∞; (2.9b)

(iii) localized motion,

(uI , vI , hI )→ 0, x→ ±∞. (2.9c)

In all cases the initial motion is assumed to be localized in the y-direction. First,
formulae not depending on the type of the initial conditions will be derived, and then
the special cases (2.9a, b, c) are discussed.

Following RZB the solution to the system (2.1), (2.2), (2.3) is sought in the form of
the following asymptotic expansions:

u = u0(x, y, t, T1, . . .) + εu1(x, y, t, T1, . . .) + · · · , (2.10a)

v = v0(x, y, t, T1, . . .) + εv1(x, y, t, T1, . . .) + · · · , (2.10b)

h = h0(x, y, t, T1, . . .) + εh1(x, y, t, T1, . . .) + · · · . (2.10c)

Here Tn = εnt, n = 1, 2, . . . are the slow times needed to prevent the solution from a
secular growth in time.

3. Lowest-order solution (linear adjustment)
3.1. Splitting

It is convenient to use the vorticity equation (2.5) instead of the mass conservation
equation (2.1c) in the analysis to follow. Substitution of (2.10) into (2.1a, b), (2.2),
(2.3), and (2.5) gives at the lowest order:

∂u0

∂t
− v0 = −∂h0

∂x
,

∂v0

∂t
+ u0 = −∂h0

∂y
,

∂(ζ0 − h0)

∂t
= 0, (3.1a–c)

v0|y=0 = 0, (u0, v0, h0)t=0 = (uI , vI , hI ). (3.1d, e)

By virtue of (3.1c) the lowest-order vorticity does not depend on the fast time t, i.e.

ζ0 − h0 = Π0(x, y, T1, . . .). (3.2)

The solution to (3.1) is represented as a sum of fast and slow components,

(u0, v0, h0) = (ũ0, ṽ0, h̃0)(x, y, t, T1, . . .) + (ū0, v̄0, h̄0)(x, y, T1, . . .), (3.3)

the fast component having zero average with respect to the fast time t, i.e.

〈ũ0〉t = 〈ṽ0〉t = 〈h̃0〉t = 0. (3.4)

Here the averaging is defined as follows:

〈a〉t = lim
1

Tav

∫ Tav

0

a dt as Tav →∞. (3.5)
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Applying the averaging (3.5) to (3.1a, b), (3.2) we obtain the following equations for
the slow and fast components:

v̄0 =
∂h̄0

∂x
, ū0 = −∂h̄0

∂y
, ζ̄0 − h̄0 = ∇2h̄0 − h̄0 = Π0, (3.6a–c)

v̄0|y=0 = 0; (3.6d )

∂ũ0

∂t
− ṽ0 = −∂h̃0

∂x
,

∂ṽ0

∂t
+ ũ0 = −∂h̃0

∂y
, ζ̃0 − h̃0 = 0, (3.7a–c)

ṽ0|y=0 = 0. (3.7d )

3.2. Initial conditions for the fast and slow zonal velocities

Of course, the splitting (3.3) is incomplete unless the initial conditions for each
component are determined. This can be easily done for the meridional velocity v0.
The initial field v̄0I (in what follows the initial fields are designated by the subscript
I) for the slow meridional velocity satisfies an equation readily derived from (3.6c)
and the geostrophic equation (3.6a):

∇2v̄0I − v̄0I =
∂ΠI

∂x
, ΠI = ζI − hI =

∂vI

∂x
− ∂uI

∂y
− hI . (3.8a, b)

Equation (3.8a) should be solved with the boundary condition

v̄0I |y=0 = 0. (3.8c)

The system (3.8) allows us to find the initial field v̄0I . However, the initial field h̄0I

cannot be determined at this stage since (3.8c), (3.6a) imply only that h̄0I is a constant
at y = 0,

h̄0I |y=0 = h̄
(B)
0I = constant, (3.9)

and one has to determine this constant h̄(B)
0I , to make the problem for h̄0I complete.

Finding this constant is related to analysis of the Kelvin waves arising when the initial
conditions (2.2) are not geostrophically balanced.

Knowing v̄0I from (3.8) one can find the ‘fast’ initial field

ṽ0I = vI − v̄0I = F(x, y). (3.10a)

Another initial condition for ṽ0 follows from (3.6b), (3.7b), and (3.1e):

∂ṽ0

∂t

∣∣∣∣
t=0

= −
(
uI +

∂hI

∂y

)
= G(x, y). (3.10b)

The equation for ṽ0 is derived from (3.7a, b, c) (see e.g. RZB for details):

Lwṽ0 = 0, Lw = − ∂
2

∂t2
+ ∇2 − 1. (3.11)

This equation together with the initial conditions (3.10), and the boundary condition
(3.7d ) allows us to determine the field ṽ0 given initial conditions (2.2).
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3.3. Fast fields ṽ0, ũ0, h̃0

It is convenient to construct the solution for ṽ0 for the whole plane instead of the
half-plane. To do that we determine the odd functions

(Fodd, Godd) =

{
(F(x, y), G(x, y)), y > 0

−(F(x,−y), G(x,−y)), y < 0
(3.12)

and search for the solution to equation (3.11) which is bounded at infinity, and valid
on the whole plane, with the initial conditions

ṽ0I = Fodd(x, y),
∂ṽ0

∂t

∣∣∣∣
t=0

= Godd(x, y). (3.13)

The resulting field ṽ0 is also odd and therefore satisfies the boundary condition (3.7d ).
The linear problem (3.11), (3.13) is conveniently solved using Fourier series (in the
periodic case (2.9a)), and Fourier integrals. The resulting solutions in all cases are
represented as a superposition of harmonic IG waves with constant amplitudes. In
Appendix A the formulae for the solution to (3.11), (3.13) are presented for all cases
(2.9a, b, c).

An important point is that the problem (3.11), (3.13) determines only the fast time
dependence of ṽ0 and to introduce the slow time dependence we represent ṽ0 as a sum
(cf. RZB):

ṽ0 = ṽ0f(x, y, t) + ṽ00(x, y, t, T1, T2, . . .). (3.14)

Here ṽ0f is the solution to the problem (3.11), (3.13) and ṽ00 has a form analogous
to ṽ0f (i.e. it is also is a superposition of linear IG waves which is an odd function
of y) but with the still unknown wave amplitudes depending on the slow times
(see Appendix A and RZB for more details). Obviously, ṽ00 is a solution to the
homogeneous wave equation (3.11) and the only condition to be satisfied by ṽ00 is
that it is zero at T1 = T2 = . . . 0. Due to this condition the correction ṽ00 can be
neglected for times t � ε−1. This additional term in the lowest-order wave solution
and analogous terms in other fields are, in principle, necessary to avoid secular growth
at higher order of the perturbation theory.

To find the fields ũ0, h̃0 we use the equations following from (3.7a, b, c):

∂2h̃0

∂y2
− h̃0 = −

(
∂ṽ0

∂x
+
∂2ṽ0

∂t ∂y

)
,

∂2ũ0

∂y2
− ũ0 =

∂ṽ0

∂t
+

∂2ṽ0

∂x ∂y
. (3.15a, b)

The solutions to (3.15a, b) are conveniently written in the form

ũ0 = ũ01(x, y, t, T1, . . .) + C (0)
u (x, t, T1, . . .) e−y, (3.16a)

h̃0 = h̃01(x, y, t, T1, . . .) + C
(0)
h (x, t, T1, . . .) e−y, (3.16b)

where C (0)
u and C

(0)
h are some arbitrary functions which have to be determined and

ũ01, h̃01 are expressed in terms of ṽ0:

ũ01 = −1

2

(
∂s+

∂t
+
∂s−

∂x

)
, h̃01 =

1

2

(
∂s+

∂x
+
∂s−

∂t

)
, (3.17a, b)

s± = ey
∫ ∞
y

ṽ0 e−y dy ± e−y
∫ y

−∞
ṽ0 ey dy. (3.17c)

The slow time dependence in ũ01, h̃01 is due to the term ṽ00 in (3.14).
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3.4. The Kelvin wave and the initial slow field h̄0I

To determine the functions C (0)
u , C (0)

h we write equations (3.7a, b, c) at y = 0:

∂ũ0

∂t
+
∂h̃0

∂x
= 0, ũ0 = −∂h̃0

∂y
, h̃0 = −∂ũ0

∂y
, y = 0, (3.18a–c)

Using the representation (3.17) and the fact that ṽ0 is an odd function of y, one can
show that

ũ0|y=0 = −
∫ ∞

0

∂ṽ0

∂x
e−y dy + C (0)

u ,
ũ0

∂y

∣∣∣∣
y=0

= −
∫ ∞

0

∂ṽ0

∂t
e−y dy − C (0)

u ; (3.19a, b)

h̃0|y=0 =

∫ ∞
0

∂ṽ0

∂t
e−y dy + C

(0)
h ,

∂h̃0

∂y

∣∣∣∣
y=0

=

∫ ∞
0

∂ṽ0

∂x
e−y dy − C (0)

h . (3.20a, b)

Substituting (3.19a), (3.20b) into (3.18b) we obtain that

C (0)
u = C

(0)
h . (3.21)

In turn, the substitution of (3.19a), (3.20a) into (3.18a) and the taking into account
of (3.21), gives the equation for C (0)

u :

∂C (0)
u

∂t
+
∂C (0)

u

∂x
= 0, (3.22)

whence

C (0)
u = C

(0)
h = K (0)

w (x− t, T1, . . .). (3.23)

Thus the last terms in (3.16a, b) describe the Kelvin wave propagating in such a way
that the boundary is to the right of the propagation direction.

To determine the Kelvin wave profile we consider equation (3.20a) at the initial
moment and use (3.10); as a result we have

h̃0I |y=0 = −
∫ ∞

0

(
uI +

∂hI

∂y

)
e−y dy +K (0)

w (x). (3.24)

Bearing in mind that

h̃0I + h̄0I = hI (3.25)

we obtain the equation (see (3.9))

K (0)
w (x) =

∫ ∞
0

(
uI +

∂hI

∂y

)
e−y dy + hI |y=0 − h̄0I |y=0, (3.26)

relating the Kelvin wave profile to the constant boundary value h̄(B)
0I (3.9) of the initial

slow elevation h̄0I , which is also unknown. To calculate this constant and the Kelvin
wave profile we use condition (3.4). As we show in Appendix B, the fields ṽ0, ũ01, h̃01

decay with increasing time t so that

ṽ0 = O

(
1

t3/2

)
, ũ01 = O

(
1

t3/2

)
, h̃01 = O

(
1

t3/2

)
, t→∞, x, y fixed (3.27)

and their averages (3.5) are definitely zero. Thus the restriction imposed by (3.4) on
the Kelvin wave profile can be written as

〈K (0)
w (x− t)〉t = lim

1

Tav

∫ x

x−Tav
K (0)
w (z) dz = 0 as Tav →∞. (3.28)
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Applying (3.28) to (3.26) one obtains the simple formulae for the boundary value of
the initial slow elevation

h̄
(B)
0I =

∫ ∞
0

〈uI + hI〉|e−y dy, (3.29)

and the Kelvin wave profile

K (0)
w (x) =

∫ ∞
0

[uI + hI − 〈uI + hI〉]e−y dy (3.30)

where the averaging

〈a(x)| = lim
1

Tav

∫ x

x=Tav

a(x) dx as Tav →∞ (3.31)

is introduced. Of course, if a(x) is a smooth bounded function (as our initial fields are
assumed to be) then 〈a〉 does not depend on x and depends only on the behaviour
of a(x) as x → −∞. Physically the condition (3.29) means that the fast Kelvin wave
brings ‘information’ from x = −∞ to x = +∞ propagating always in such a way that
the boundary is to the right of the propagation direction. Correspondingly, the initial
boundary condition for the slow component is determined only by the initial fields at
x = −∞.

Formula (3.30) gives us a simple way to calculate the lowest-order Kelvin wave
profile for arbitrary initial conditions (2.2). In the case of periodic boundary conditions
(2.9a) the condition (3.30) means that the periodic Kelvin wave profile should not
contain a part independent of x (purely zonal flow), i.e.

K (0)
w (x) =

∫ ∞
0

[uI + hI − uI0 − hI0] e−y dy (3.32a)

and for h̄(B)
0I we have

h̄
(B)
0I =

∫ ∞
0

(uI0 + hI0) e−y dy. (3.32b)

In the case of an initial ‘zonal step’ (2.9b) the Kelvin wave profile and h̄(B)
0I are given

by

K (0)
w (x) =

∫ ∞
0

[uI + hI − u(−)
I − h(−)

I ] e−y dy, (3.33a)

h̄
(B)
0I =

∫ ∞
0

[u(−)
I + h

(−)
I ] e−y dy. (3.33b)

Finally, in the localized case (2.9c) we have

K (0)
w (x) =

∫ ∞
0

(uI + hI ) e−ydy, (3.34a)

h̄
(B)
0I = 0. (3.34b)

The Kelvin wave profiles for each of these cases are shown schematically in figure 2.
Note that in the case of geostrophically balanced initial conditions when hI =

h̄0I and uI = −∂hI/∂y the Kelvin wave disappears, as follows from (3.26). In the
absence of nonlinearity the initial Kelvin wave profile (3.30) propagates steadily; the
nonlinearity forces the profile to change slowly in time (see below, § 5).

Knowing the boundary condition (3.29) (or (3.32b), (3.33b), (3.34b)) one can find
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Periodic

‘Step’-like

Localized

Kw
(0)(x)

x

Figure 2. Schematic representation of the lowest-order initial Kelvin wave profile K (0)
w (x) for

various initial conditions.

h̄0I using the equation

∇2h̄0I − h̄0I = ΠI =
∂vI

∂x
− ∂uI

∂y
− hI , (3.35)

which readily follows from the initial conditions (3.1e) and equations (3.3), (3.6c),
(3.7c). Clearly, the solution h̄0I , ũ0, ṽ0, h̃0 (without the slow time dependence) describes
the linear adjustment of an arbitrary initial field (2.2) on the half-plane.

Thus, at the lowest order we obtain a fast–slow motion splitting defined in a unique
way for arbitrary initial conditions. Note that the procedure imposes no limitations
on the relative initial values of fast and slow components. The fast part of the motion
is completely resolved while the slow one remains undetermined. The slow evolution
is determined from the condition of the absence of secular growth of the first-order
solution.

4. Dynamics of the lowest-order slow motion
4.1. Problem description for the lowest-order slow motion

To describe the time development of the lowest-order slow component and slow
evolution of the fast one we consider the first-order solution. Substitution of (2.10)
into (2.1a, b), (2.2), (2.3), (2.5) gives

∂u1

∂t
− v1 = −∂h1

∂x
+ R(1)

u ,
∂v1

∂t
+ u1 = −∂h1

∂y
+ R(1)

v ,
∂(ζ1 − h1)

∂t
= R

(1)
ζ , (4.1a–c)

R(1)
u = −

(
∂u0

∂T1

+ u0

∂u0

∂x
+ v0

∂u0

∂y

)
, R(1)

v = −
(
∂v0

∂T1

+ u0

∂v0

∂x
+ v0

∂v0

∂y

)
, (4.1d, e)

R
(1)
ζ = −∂(ζ0 − h0)

∂T1

− ∂[u0(ζ0 − h0)]

∂x
− ∂[v0(ζ0 − h0)]

∂y
, (4.1f )

v1|y=0 = 0, (u1, v1, h1)t=0 = 0. (4.1g, h)
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Analysis of system (4.1) is carried out along the same lines as in the lowest-order
case. We represent the first-order field as a sum of fast and slow components,

(u1, v1, h1) = (ũ1, ṽ1, h̃1)(x, y, t, T1, . . .) + (ū1, v̄1, h̄1)(x, y, T1, . . .), (4.2)

the fast component having zero average (3.5), and apply (3.5) to equations (4.1).
The averaging of the first-order vorticity equation (4.1c) gives the QG potential

vorticity equation

∂(∇2h̄0 − h̄0)

∂T1

+ J(h̄0,∇2h̄0) = 0 (4.3)

describing evolution of the slow motion. The first-order slow equations are written in
the form

v̄1 =
∂h̄1

∂x
− R(1)

u , ū1 = −∂h̄1

∂y
+ R

(1)

v , ζ̄ − h̄1 = Π1(x, y, T1, . . .), (4.4a–c)

v̄1|y=0 = 0; (4.4d )

R
(1)

u = −
(
∂ū0

∂T1

+ ū0

∂ū0

∂x
+ v̄0

∂ū0

∂y

)
, R

(1)

v = −
(
∂v̄0

∂T1

+ ū0

∂v̄0

∂x
+ v̄0

∂v̄0

∂y

)
. (4.4e, f )

Here Π1 is some function of the slow variables which is determined at the next order.
Note that the averages of the nonlinear terms containing the lowest-order fast fields
ũ0, ṽ0 are zero, which readily follows from the large-time decay of the lowest-order
fast fields (see (3.27)) and the property (3.28) of Kelvin waves.

The initial field h̄0I is determined by equations (3.35), (3.29), and the boundary
value of h̄0 depends only on the slow time by virtue of (3.6a, d ),

h̄0|y=0 = h̄0B(T1, . . .). (4.5)

To find the function h̄0B(T1, . . .) in (4.5) we use the boundary condition for the
first-order slow variable h̄1 that readily follows from equations (4.4a), (4.4d ), and
(4.4e):

∂h̄1

∂x

∣∣∣∣
y=0

= −
(
∂ū0

∂T1

+ ū0

∂ū0

∂x

)
y=0

. (4.6)

The function h̄1 should be bounded as x→ ±∞; therefore the condition (4.6) imposes
the following additional restriction on the lowest-order fields:〈

∂ū0

∂T1

∣∣∣∣
y=0

〉
x

= −
〈

∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

〉
x

= 0, (4.7)

where the averaging 〈 〉x is determined from

〈a〉x = lim
1

2L

∫ L

−L
a dx, L→∞. (4.8)

The condition (4.7) of constant mean circulation along the boundary is well-known
(see e.g. Kamenkovich & Reznik 1978; Pedlosky 1987) but previously it was obtained
for geostrophically balanced initial conditions (2.2), i.e. no fast component was present
in the system.
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4.2. Solvability of the problem for h̄0

The problem (4.3), (4.5), and (4.7) together with initial field h̄0I known from (3.29),
(3.35) is complete and allows us to determine the lowest-order slow geostrophic
component of the motion.

To demonstrate the solvability of this problem we rewrite (4.3) in the form

∇2D − D = RD, D =
∂h̄0

∂T1

, RD = −J(h̄0,∇2h̄0), (4.9)

and assume h̄0 to be known at some moment T1 = T10. We now represent D as a sum

D = D0 + D1 (4.10)

where D0, D1 satisfy the equations

∇2D0 − D0 = RD, D0|y=0 = 0; (4.11)

∇2D1 − D1 = 0, D1|y=0 =
∂h̄0B

∂T1

. (4.12)

Here RD and, therefore, D0 are known by the above assumption, and ∂h̄0B/∂T1 can
be found. Since ∂h̄0B/∂T1 does not depend on x we have

D1 =
∂h̄0B

∂T1

e−y, (4.13)

and substitution of (4.10) into the condition (4.7) gives

∂h̄0B

∂T1

=

〈
∂D0

∂y

∣∣∣∣
y=0

〉
x

(4.14)

whence

∂h̄0

∂T1

= D0 + e−y
〈
∂D0

∂y

∣∣∣∣
y=0

〉
x

. (4.15)

Given ∂h̄0/∂T1 one can calculate the field h̄0 at T1 = T10 + dT1, and so on.
For the zonal ‘step’ case (2.9b) the boundary condition (4.5) (i.e. the function h̄0B)

does not depend on time and the slow motion does not change as x → ∓∞, being
approximately zonal there. To show this, we note that if at some moment T1 = T10

h̄0 → h̄±0 (y), x→ ±∞, (4.16)

then the derivative ∂h̄0/∂x and Jacobian RD are localized in x. In this case the solution
D0 to the problem (4.11) is also localized in x, i.e. 〈∂D0/∂y|y=0〉x = 0. This means that

∂h̄0B/∂T1 = 0 (see (4.14)) and the derivative ∂h̄0/∂T1 = D0 is also localized in x at
the moment T1 = T10. Thus h̄0 does not change as x → ∓∞ and the property (4.16)
remains valid at the moment T1 = T10 + dT1 and so on. By virtue of (2.9b) we have
for the initial vorticity ΠI (right-hand side of equation (3.35)):

ΠI → −∂u
(±)
I (y)

∂y
− h(±)

I (y) as x→ ±∞; (4.17)

therefore the initial field h̄0I also obeys (4.16). Thus for the zonal-step initial condition
the slow component remains unchanged as x → ∓∞, and is described by the QG
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equation (4.3) with the time-independent boundary condition

h̄0B =

∫ ∞
0

[u(−)
I + h

(−)
I ] e−y dy = constant. (4.18)

This consideration remains valid for the localized initial conditions (2.9c) which
are special, but a practically important case of the step initial conditions. By virtue
of (3.34b), (4.18) we have h̄0B = 0 in the localized case, and, therefore (see (4.5)), the
evolution of the localized initial field h̄0I is governed by (4.3) under the condition

h̄0|y=0 = 0, (4.19)

i.e. h̄0 remains localized for all time. This means that that the right-hand side of (4.6)
is also localized and the first-order correction h̄1 is always bounded. Correspondingly,
the condition (4.7) for the localized case is superfluous since it is satisfied identically,
and imposes no additional restrictions on the motion.

4.3. Mass, energy, and enstrophy conservation

Mass and energy conservation for the periodic and step cases are obtained in the
usual way and have the forms

∂

∂T1

∫ ∞
0

〈h̄0〉x dy = −
〈

∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

〉
x

= 0 (4.20a)

and

∂

∂T1

∫ ∞
0

〈
1
2
[(∇h̄0)

2 + h̄2
0]
〉
x

dy = −h̄0B

〈
∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

〉
x

= 0, (4.20b)

respectively. Thus the condition (4.7) provides the energy and mass conservation for
the lowest-order slow motion. Multiplying (4.3) by ∇2h̄0, averaging in x and integrating
in y from 0 to ∞ we obtain the enstrophy conservation law:

∂

∂T1

{∫ ∞
0

〈
1
2
[(∇h̄0)

2 + (∇2h̄0)
2]
〉
x

dy + Γ h̄0B

}
= 0, (4.20c)

where Γ = 〈∂h̄0/∂y|y=0〉x = constant by virtue of (4.7). Note that the law (4.20c)

includes the extra boundary term Γ h̄0B absent in an unbounded fluid.
For the localized case, the energy and enstrophy conservation laws have a standard

form, and the mass conservation is written as

∂

∂T1

∫ ∞
−∞

dx

∫ ∞
0

h̄0 dy = −
∫

∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx. (4.21)

It readily follows from (4.21) that the mass is conserved only under the condition of
zero along-boundary circulation,∫ ∞

−∞
∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx = 0. (4.22)

Note that the equation (4.22) is also a condition for locality of the first-order slow
correction h̄1, as is readily seen from (4.6). But the problem (4.3), (4.19) is well-posed
and the condition (4.22) turns out to be superfluous, i.e. it can contradict (4.19). To
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demonstrate this we use the formula∫ ∞
−∞

∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx =

∫ ∞
−∞

dx

∫ ∞
0

∂h̄0

∂x

∂h̄0

∂y
e−ydy, (4.23)

which follows from (4.3) and (4.19). To derive (4.23) we integrate (4.3) over all x; as
a result we have

∂2H

∂y2
−H = − ∂

∂y

∫ ∞
−∞

∂h̄0

∂x

∂2h̄0

∂y2
dx, H =

∫ ∞
−∞

∂h̄0

∂T1

dx. (4.24a, b)

Multiplying (4.24a) by e−y and integrating the resulting equation over all y with the
boundary condition (4.19) we arrive at (4.23). Generally, the integral on the right-
hand side of (4.23) does not vanish for an arbitrary localized h̄0 satisfying (4.19).
This means that the condition (4.22) can be violated, at least at the initial moment
T1 = 0. Therefore equations (4.3), (4.19), generally, do not validate (4.22), which means
(somewhat unexpectedly) that in the case of localized initial conditions (2.9c): (i) the
mass of the slow localized motion on a bounded half-plane may not be conserved;
(ii) the first-order slow correction field may not be localized.

5. First-order solution
5.1. Problem description for the fast first-order component

For the fast first-order components we have (cf. RZB)

∂ũ1

∂t
− ṽ1 = −∂h̃1

∂x
+ R̃(1)

u ,
∂ṽ1

∂t
+ ũ1 = −∂h̃1

∂y
+ R̃(1)

v , ζ̃1 − h̃1 = R̃
(1)
ζ , (5.1a–c)

ṽ1|y=0 = 0. (5.1d )

Here

R̃(1)
u = −

(
∂ũ0

∂T1

+ ũ0

∂ũ0

∂x
+ ṽ0

∂ũ0

∂y
+ ū0

∂ū0

∂x
+ v̄0

∂ū0

∂y
+ ũ0

∂ū0

∂x
+ ṽ0

∂ū0

∂y

)
, (5.1e)

R̃(1)
v = −

(
∂ṽ0

∂T1

+ ũ0

∂ṽ0

∂x
+ ṽ0

∂ṽ0

∂y
+ ū0

∂ṽ0

∂x
+ v̄0

∂ṽ0

∂y
+ ũ0

∂v̄0

∂x
+ ṽ0

∂v̄0

∂y

)
, (5.1f )

R̃
(1)
ζ = −∂[Ũ0(ζ0 − h0)]

∂x
− ∂[Ṽ0(ζ0 − h0)]

∂y
, (5.1g)

Ũ0 = Ũ0i − 〈Ũ0i〉t, Ṽ 0 = Ṽ 0i − 〈Ṽ 0i〉t, (Ũ0i, Ṽ 0i) =

∫ t

0

(ũ0, ṽ0) dt. (5.1h)

To derive equation (5.1c) we integrate (4.1c) over t from 0 to t taking into account
(4.1h) and, using the averaging procedure (3.5), split the resulting equation into the
slow and fast parts. The function Ṽ 0 is determined from the system readily obtained
from equation (3.11) and conditions (3.7d ), (3.10a, b):

LwṼ 0 = 0, Ṽ 0|y=0 = 0, Ṽ 0|t=0 = −〈Ṽ 0i〉t, ∂Ṽ 0

∂t

∣∣∣∣
t=0

= F(x, y), (5.2a–d )

where the function 〈Ṽ 0i〉t obeys the equations

∇2〈Ṽ 0i〉t − 〈Ṽ 0i〉t = −G(x, y), 〈Ṽ 0i〉t|y=0 = 0. (5.3)
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Given Ṽ 0 the function Ũ0 is determined by the formulae

Ũ0 = Ũ01 + Ũ0k,
∂U0k

∂t
= K (0)

w (x− t) e−y, (5.4a)

where

Ũ01 = −s
+

2
− 1

2

∂

∂x

(
ey
∫ ∞
y

Ṽ 0 e−y dy − e−y
∫ y

−∞
Ṽ 0 ey dy

)
. (5.4b)

The function Ũ0k is given by the equation

Ũ0k = −e−y
∫ x−t

−∞
K (0)
w (z, T1, . . .) dz, (5.4c)

in the ‘step’ and localized cases, and

Ũ0k = ie−y
∑
m

km(T1, . . .)

m
eim(x−t), k0 = 0, (5.4d)

in the periodic case; here km are the coefficient in the Fourier-series expansion in x of
the Kelvin wave K (0)

w (x− t, T1, . . .) e−y .

5.2. Initial conditions for the fast and slow first-order zonal velocities

Like the lowest-order approximation (§ 3) the analysis starts with calculating the initial
slow first-order meridional velocity v̄1I . First, we derive from (4.4a, b, c) the equation
for ∂h̄1I/∂x analogous to (3.8),

∇2 ∂h̄1I

∂x
− ∂h̄1I

∂x
=

∂

∂x
[Π1I + divR (1)

vI ], (5.5a)

where

R (1)
v = (R (1)u , R (1)

v ), divR (1)
v = 2

[
∂2h̄0

∂x2

∂2h̄0

∂y2
−
(
∂2h̄0

∂x ∂y

)2
]
. (5.5b, c)

The boundary condition for (5.5a) follows from (4.6):

∂h̄1I

∂x

∣∣∣∣
y=0

= −
(
∂ū0

∂T1

∣∣∣∣
t=0

+ ū0I

∂ū0I

∂x

)
y=0

. (5.6)

To complete the problem (5.5a), (5.6) Π1I and ∂ū0/∂T1|t=0 should be found. By

virtue of (4.4c), (5.1c) ζ1 − h1 = Π1 + R̃
(1)
ζ , and, therefore, taking into account initial

conditions (4.1h), we have

Π1I = −R̃(1)
ζI =

∂(Ũ0IΠI )

∂x
+
∂(Ṽ 0IΠI )

∂y
, (5.7)

where Ũ0I , Ṽ 0I can be found using (5.2) to (5.4). The derivative ∂ū0/∂T1|t=0 is obtained
from (4.15),

∂ū0

∂T1

∣∣∣∣
t=0

= − ∂2h̄0

∂y ∂T1

∣∣∣∣
t=0

= −∂D0I

∂y
+ e−y

〈
∂D0I

∂y

∣∣∣∣
y=0

〉
x

. (5.8)

Thus the problem for ∂h̄1I/∂x is well-defined and given ∂h̄1I/∂x the initial field v̄1I

can be determined from (4.4a, e):

v̄1I =
∂h̄1I

∂x
− R (1)

uI . (5.9)
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The function v̄1I is periodic for the periodic case (2.9a), and localized for the cases
(2.9b, c). Given v̄1I one can determine one initial condition ṽ1I from (4.1h):

ṽ1I = −ṽ1I . (5.10)

Another initial condition for ṽ1 follows from (4.1b, h):

∂ṽ1

∂t

∣∣∣∣
t=0

= R
(1)
vI = −

(
∂v0

∂T1

∣∣∣∣
t=0

+ uI
∂vI

∂x
+ vI

∂vI

∂y

)
. (5.11)

As we will see below, ṽ0 does not depend on the slow time T1, therefore from (4.15),

∂v0

∂T1

∣∣∣∣
t=0

=
∂2h̄0

∂x ∂T1

∣∣∣∣
t=0

=
∂D0I

∂x
. (5.12)

5.3. Analysis of resonances in the equation for ṽ1

The equation for ṽ1 follows from (5.1a, b, c) (see RZB for more details):

−∂
2ṽ1

∂t2
+ ∇2ṽ1 − ṽ1 = F̃ (1)

v , (5.13a)

F̃ (1)
v = −

(
∂2R̃(1)

u

∂y2
− R̃(1)

u +
∂R̃(1)

v

∂t
− ∂2R̃(1)

v

∂x ∂y
+
∂2R̃

(1)
ζ

∂t ∂y
− ∂R̃

(1)
ζ

∂x

)
. (5.13b)

This equation, together with the initial conditions (5.10), (5.11) and the boundary
condition (5.1d ), determine the field ṽ1.

Of course, the first question that arises is whether the right-hand side of (5.13a)
contains secular terms causing either a rapidly growing response, or a response with
a non-zero average (3.5) (in this case our first-order splitting (4.2) fails). To examine
this issue the source term F̃ (1)

v is represented as a sum (using (3.15b), cf. RZB):

F̃ (1)
v = 2

∂2ṽ0

∂T1 ∂t
+ Φ

(s)
0 Φ

(ig)
0 + Φ

(ig)
1 Φ

(ig)
2 + Φ

(k)
0 Φ

(ig)
3 + Φ

(k)
1 Φ

(s)
1 + Φ

(k)
2 Φ

(k)
3 , (5.14)

where the superscripts s, ig, and k denote the slow component, the component
consisting of the IG waves, the Kelvin wave component, respectively. Each of the
functions Φ(ig)

m , Φ(k)
m , m = 0, 1, 2, 3, is a solution to the homogeneous wave equation

(3.11); the slow functions Φ(s)
n , n = 0, 1, do not depend on the fast time t. The

functions Φ(s)
n , Φ

(ig)
m , Φ(k)

m are localized in the y-direction, and either periodic or bounded
or localized in the x-direction depending on the initial conditions (2.9). Analysis of
all possible interactions is rather tedious; some estimates for the localized case are
given in Appendix B. Here only the results will be reported.

Triad interactions between IG waves are prohibited, as can be readily shown using
their dispersion relation (A10a), and, therefore the response ṽww generated by the
term Φ

(ig)
1 Φ

(ig)
2 decays rapidly, ṽww|t=∞ = O(t−3) at a fixed point x, y. The interactions

between Kelvin waves are contained in the first two terms in the brackets in the
right-hand side of (5.13b) and the corresponding source term Φ

(k)
2 Φ

(k)
3 has the form

Φ
(k)
2 Φ

(k)
3 = 3K (0)

w (x− t, T1, . . .)
∂K (0)

w

∂x
(x− t, T1, . . .) e−2y. (5.15)

The corresponding response

ṽkk = K (0)
w (x− t, T1, . . .)

∂K (0)
w

∂x
(x− t, T1, . . .) e−2y (5.16)
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does not decay in time but it is fast since

〈ṽkk〉t = 0, (5.17)

and makes no contribution to the slow component.
The responses ṽsw and ṽkw to the interactions between the slow component and IG

waves (term Φ
(s)
0 Φ

(ig)
0 ), and between Kelvin and IG waves (term Φ

(k)
0 Φ

(ig)
3 ), respectively,

decay in time but the decay rate depends on the initial conditions. For the periodic
initial conditions both ṽsw and ṽkw are O(t−1/2), t→∞, while for the step and localized
cases ṽsw = O(t−1), ṽkw = O(t−3/2). Finally, the response ṽsk to the interaction between
Kelvin waves and the slow motion (term Φ

(k)
1 Φ

(s)
1 ) does not decay for the periodic

case, but 〈ṽsk〉t = 0, and ṽsk = O(t−1) for the step and localized cases. We note that

although the Fourier representations of the nonlinear terms Φ(s)
0 Φ

(ig)
0 , Φ(k)

0 Φ
(ig)
3 , and

Φ
(k)
1 Φ

(s)
1 , contain resonant harmonics their measure is zero in the continuous spectrum

and these harmonics give no dangerous contributions (cf. RZB).
The general conclusion of this analysis is that the response to nonlinear interactions

in (5.14) does not grow in time, and it is fast in the sense that it has a zero time-average
(3.5). We emphasize that taking into account the boundary and initial conditions
(5.1d ), (5.10), (5.11) does not change this conclusion.

The lack of the resonant nonlinear terms on the right-hand side of (5.13a) means
that ṽ0, and therefore, the function ṽ00 in (3.14) do not depend on the slow time
T1 since in the opposite case the first term on the right hand side of (5.14) gives a
secular growth. Clearly, the functions ũ01, h̃01 in (3.16) also do not depend on T1,
since they are linearly depend on ṽ0 (see § 3). At the same time, as we will see below,
the lowest-order Kelvin wave in (3.16) does depend on slow times to prevent secular
growth of the first-order Kelvin wave.

5.4. The fields ũ1, h̃1, and the first-order Kelvin wave

The fields ũ1, h̃1 are found analogously to ũ0, h̃0 in § 3. The equations analogous to
(3.15) simply follow from (5.1a, b, c):

∂2h̃1

∂y2
− h̃1 = F̃

(1)
h = −

(
∂ṽ1

∂x
+
∂2ṽ1

∂t ∂y

)
+ R̃

(1)
ζ +

∂R̃(1)
v

∂y
, (5.18a)

∂2ũ1

∂y2
− ũ1 = F̃ (1)

u = −∂ṽ1

∂t
+

∂2ṽ1

∂x ∂y
− R̃(1)

v −
∂R̃

(1)
ζ

∂y
, (5.18b)

Solutions to (5.18a, b) are conveniently written in the form

ũ1 = ũ11 + C (1)
u (x, t, T1, . . .) e−y, h̃1 = h̃11(x, y, t) + C

(1)
h (x, t, T1, . . .) e−y. (5.19a, b)

Here C (1)
u and C (1)

h are arbitrary functions which have to be determined and

ũ11 = −1

2

(
ey
∫ ∞
y

F̃ (1)
u e−y dy + e−y

∫ y

0

F̃ (1)
u ey dy

)
, (5.20a)

h̃11 = −1

2

(
ey
∫ ∞
y

F̃
(1)
h e−y dy + e−y

∫ y

0

F̃
(1)
h ey dy

)
. (5.20b)

To determine C (1)
u and C (1)

h we write (5.1a, b, c) at y = 0 (cf. the derivation of (3.22)):

∂ũ1

∂t
+
∂h̃1

∂x
= R̃(1)

u |y=0, ũ1 = −∂h̃1

∂y
, h̃1 = −∂ũ1

∂y
− R̃(1)

ζ |y=0 at y = 0. (5.21a–c)
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By virtue of (5.19) we have

(ũ1, h̃1)y=0 = −1

2

∫ ∞
0

(F̃ (1)
u , F̃

(1)
h ) e−y dy + (C (1)

u , C
(1)
h ), (5.22a)

(
∂ũ1

∂y
,
∂h̃

∂y

)
y=0

= −1

2

∫ ∞
0

(F̃ (1)
u , F̃

(1)
h ) e−y dy − (C (1)

u , C
(1)
h ). (5.22b)

Substitution of (5.22) into (5.21b, c) gives

C (1)
u − C (1)

h =
1

2

∫ ∞
0

(F̃ (1)
u + F̃

(1)
h ) e−y dy, (5.23a)

C (1)
u − C (1)

h = −1

2

∫ ∞
0

(F̃ (1)
u + F̃

(1)
h ) e−y dy + R̃

(1)
ζ |y=0. (5.23b)

Equations (5.23) are compatible since∫ ∞
0

(F̃ (1)
u + F̃

(1)
h ) e−y dy = R̃

(1)
ζ |y=0. (5.24)

The validity of (5.24) can be shown using the identity

F̃ (1)
u + F̃

(1)
h =

∂F

∂y
− F, F =

∂ṽ1

∂x
− ∂ṽ1

∂t
+ R̃(1)

v − R̃(1)
ζ . (5.25a, b)

Thus we have

C (1)
u = C

(1)
h + 1

2
R̃

(1)
ζ

∣∣
y=0
. (5.26)

Substituting (5.22a), (5.26) into (5.21a) we obtain the equation for C (1)
h :

∂C
(1)
h

∂t
+
∂C

(1)
h

∂x
=

1

2

∫ ∞
0

(
∂F̃ (1)

u

∂t
+
∂F̃

(1)
h

∂t

)
e−y dy + R̃(1)

u |y=0 − 1

2

∂R̃
(1)
ζ

∂t

∣∣∣∣
y=0

. (5.27)

Using the formula

∂F̃ (1)
u

∂t
+
∂F̃

(1)
h

∂x
=
∂2ṽ1

∂t2
− ∂2ṽ1

∂x2
+
∂2R̃(1)

v

∂x ∂y
− ∂R̃(1)

v

∂t
+
∂R̃

(1)
ζ

∂x
− ∂2R̃

(1)
ζ

∂t∂y
(5.28)

and integration by parts we write (5.27) in the form

∂C
(1)
h

∂t
+
∂C

(1)
h

∂x
= Rk =

(
∂

∂t
+

∂

∂x

)

×
[

1

2

∫ ∞
0

(
∂ṽ1

∂t
− ∂ṽ1

∂x
+ R̃(1)

v + R̃
(1)
ζ

)
e−y dy −

(
ũ2

0

2
+ ū0ũ0

)
y=0

]

− ∂ũ0

∂T1

∣∣∣∣
y=0

+
∂

∂t

[(
ũ2

0

2
+ ū0ũ0

)
y=0

−
∫ ∞

0

(R̃(1)
v + R̃

(1)
ζ ) e−y dy

]
. (5.29)

Equation (5.29) describes the first-order Kelvin waves plus some function bounded in
time and space. Analysis of resonant terms on the right-hand side Rk of (5.29) gives
us the equation for slow evolution of the lowest-order Kelvin wave.



Nonlinear geostrophic adjustment 275

5.5. Slow evolution of the lowest-order Kelvin wave

The term (∂/∂t+ ∂/∂x)[. . .] in Rk is non-resonant while the terms (∂/∂t)( 1
2
ũ2

0)y=0 and
∂ũ0/∂T1|y=0 are definitely resonant, so the question is whether the other terms in Rk
are resonant. To answer this the response to various nonlinear terms on the right-hand
side of (5.29) was examined in an analogous way to the nonlinear source terms in
(5.13), (5.14). for the localized initial conditions (2.9c) only the interactions Kelvin
wave–Kelvin wave are resonant and the other interactions (Kelvin wave–IG waves,
Kelvin wave–slow component, IG waves–IG waves, and IG waves–slow component)
are not resonant. Therefore the resulting equation for the slow evolution of the
lowest-order Kelvin wave in the localized case has the form

∂K (0)
w

∂T1

+K (0)
w

∂K (0)
w

∂x′
= 0, x′ = x− t. (5.30)

Equation (5.30) should be solved under initial condition (3.34a).
In the periodic and ‘step’ cases the interaction Kelvin wave–slow component turns

out to be resonant in addition to the Kelvin wave–Kelvin wave interactions; all
other interactions are ineffective. The term in Rk related to the Kelvin wave–slow
component interaction using (5.1h) and (3.16a) can be written in the form

Rkm =

∫ ∞
0

(
∂K (0)

w

∂t

∂v̄0

∂x
+K (0)

w

∂Π0

∂x
+
∂K (0)

w

∂x
Π0

)
e−2y dy +

(
ū0

∂K (0)
w

∂t

)
y=0

. (5.31)

Each term in the integrand and in the brackets on the right-hand side of (5.31) can
be represented as a product:

P = ak(x, y, t, T1, . . .)bs(x, y, T1, . . .), (5.32)

where ak and bs correspond to the Kelvin wave and slow component, respectively. In
the periodic case both these terms are represented as Fourier series in x:

ak = e−y
∑
m

akm(T1, . . .) e−im(x−t), bs =
∑
n

bsn(y, T1, . . .) e−imx, (5.33a, b)

and therefore (5.31) takes the form

Rkm =
∑
m,n

ākmb̄sn ei(m+n)x−ixt (5.34)

where ākm and b̄sn are coefficients depending on slow times. Clearly, the sum (5.34)
is resonant only if the coefficient b̄s0 and therefore bs0 are non-zero, i.e. the slow
component includes a zonal current. Simple calculations using (3.6a, b, c) show that
the resonant part of Rkm can be written as

R
(r)
km = −C(T1, . . .)

∂K (0)
w

∂x
, (5.35)

where

C = −3

∫ ∞
0

h̄00 e−2y dy + 2h̄0B, h̄00(y, T1, . . .) = 〈h̄0〉x, h̄0B = h̄0|y=0. (5.36a, b, c)

The resulting equation for the slow evolution of the lowest-order Kelvin wave is
written as

∂K (0)
w

∂T1

+ [K (0)
w + C(T1, . . .)]

∂K (0)
w

∂x′
= 0. (5.37)

The initial condition for (5.37) is given by equation (3.32a).
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In the step case (2.9b) the resonant part of Rkm has a form similar to (5.35) but
with the coefficient depending on x:

R
(r)
km = −Cst(x, T1, . . .)

∂K (0)
w

∂x
, Cst = −3

∫ ∞
0

h̄0 e−2y dy + 2h̄0B. (5.38a, b)

The x-dependence is related to the integral F =
∫ ∞

0
h̄0 e−2y dy which has the form of

a step (see above, § 4):

F = F(x, T1, . . .)→ F (±), x→ ±∞, (5.39)

F (±) =

∫ ∞
0

h̄
(±)
0 (y) e−2y dy, h̄

(±)
0 = lim h̄0, x→ ±∞. (5.40)

We demand that the solution be bounded as t→∞ in any coordinate frame including
one moving with the Kelvin-wave phase speed. It follows from this condition that the
resonant part R(r)

km takes the form (5.38a) but with constant parameter C equal to

C = −3

∫ ∞
0

h̄
(+)
0 e−2ydy + 2h̄0B. (5.41)

Correspondingly, the equation for slow evolution of the Kelvin wave in the step case
has the form (5.37) but with constant C given by (5.41). Note that (5.37) can be
reduced to (5.30) by the simple coordinate transformation

x′ → x′ −XC(T1, . . .),
∂XC

∂T1

= C. (5.42a, b)

Thus we see that in all cases the slow evolution of Kelvin waves is governed by the
equation for a simple wave (5.30); the presence of mean zonal current in the periodic
and step cases results only in a Doppler shift of the Kelvin-wave phase speed. It is
well-known (e.g. Lighthill 1980) that in general the simple wave breaks in a finite time,
and therefore the Kelvin wave behaviour can be characterized as fast propagation of
a slowly breaking profile. Note that the breaking can be prevented if some additional
dispersion or friction is incorporated in the model.

5.6. Mass conservation in the localized case

In § 4.3 we showed that in the localized case the total mass of the slow component
was not conserved, and the first-order slow correction was not localized. Below, we
will see that the first-order Kelvin wave is also non-localized, and together with the
non-localized first-order slow correction compensates the non-conservation of the
lowest-order slow field mass.

The first-order correction h̄1 obeys the equation following from (4.4a, b, c):

∇2h̄1 − h̄1 = Π1 + divR (1)
v , (5.43)

where R (1)
v is given by (5.5b). To obtain the boundary condition for (5.43) we use

equation (4.6) in a slightly modified form,

∂h̄1

∂x

∣∣∣∣
y=0

=
∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

− ū0

∂ū0

∂x

∣∣∣∣
y=0

, (5.44)

one of the conditions (5.22a),

h̄|y=0 = −1

2

∫ ∞
0

F̃
(1)
h e−y dy + C

(1)
h , (5.45)
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and the presumed locality of the solution to problem (2.1a, b), (2.3), (2.5) with localized
initial conditions (2.9c).

The solution C (1)
h to (5.29) can be represented (since all nonlinear terms are localized

and tend to zero at t→∞) as a sum:

C
(1)
h = K (1)

w (x− t, T1, . . .) + CL(x, t), (5.46)

where K (1)
w is the first-order Kelvin wave amplitude and CL a localized solution to

the inhomogeneous equation (5.27). Since we are looking for a localized solution, the
sum h1 = h̄1 + h̃1 should be space-localized. Therefore, using (5.36) and the fact that
the function F̃ (1)

h is localized, (5.45) can be written as

h̄1|y=0 = h̄1B(x, T1, . . .) = −K (1)
w (x− t, T1, . . .) + FL, (5.47)

where FL is a localized function. The Kelvin wave K (1)
w (x− t, T1, . . .) e−y should have

zero time average (see (3.28)), therefore from (5.47)

h̄1B → 0, x→ −∞. (5.48)

The boundary condition for h̄1 follows from (5.44), (5.48):

h̄1|y=0 =

∫ x

−∞
∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx− ū2
0

2

∣∣∣∣
y=0

. (5.49)

The solution h̄1 to the problem (5.43), (5.49) can be represented as a sum of
non-localized and localized terms, the non-localized term arising when the along-wall
circulation ∫ ∞

−∞
∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx

is non-zero. The function Π1 in (5.43) is localized since by virtue of (4.4c), (5.1c)
ζ1 − h1 = Π1 + R̃

(1)
ζ and R̃(1)

ζ is localized. Therefore h̄1 is represented in the form

h̄1 = h̄1B(x, T1, . . .) e−y + h̄11, (5.50)

where h̄11 obeys

∇2h̄11 − h̄11 = Π1 + divR (1)
v − ∂2h̄1B

∂x2
e−y, h̄11|y=0 = 0. (5.51a, b)

The right-hand side of (5.51a) is localized, and therefore h̄11 is also localized.
We now write the elevation h up to O(ε2) as

h = h̄0 + h̃01 +K (0)
w (x− t, T1, . . .) e−y

+ε[h̄1 + h̃11 + CL e−y +K (1)
w (x− t, T1, . . .) e−y], (5.52)

and integrate (5.52) over the half-plane y > 0. It readily follows from (3.17b, c) that
the ‘mass’ of the fast field h̃01 is conserved (taking into account that ṽ0 in (3.17c) is
odd in y): ∫

y>0

h̄01dx dy = constant. (5.53)

This is also valid for the lowest-order Kelvin wave solution,∫
y>0

K (0)
w (x− t, T1, . . .) e−y dx dy = constant, (5.54)
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as follows from (5.30). Also, the calculations show that the changes of the ‘mass’ of
the fast field h̃11 are compensated by the term CL e−y , i.e.

∂

∂t

∫
y>0

[h̃11 + CL e−y]dx dy = 0. (5.55)

To obtain (5.55) we use equations (5.20b), (5.24), and the equation for CL, which
coincides with (5.27) where C (1)

h is replaced by CL.
So, for the total mass to be conserved the term

S0 − ∂

∂T1

∫
y>0

h̄0 dx dy = −
∫

∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx (5.56)

should be balanced by the term

S1 =
∂

∂t

∫
y>0

[h̄1 +K (1)
w (x− t, T1, . . .) e−y]dx dy. (5.57)

To show that this is really the case we note that by virtue of (5.47), (5.49)

K (1)
w = −

∫ ∞
−∞

∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx, x→∞, (5.58)

whence it follows that the first-order Kelvin wave is not localized, it has a step-like
shape if ∫ ∞

−∞
∂2h̄0

∂y∂T1

∣∣∣∣
y=0

dx ≈ 0.

Nevertheless the integral in (5.57) converges since the sum h̄1 +K (1)
w (x− t, T1, . . .) e−y

is localized as follows from (5.58), (5.50), and (5.47):

h̄1 +K (1)
w (x− t, T1, . . .) e−y = [h̄1B +K (1)

w (x− t, T1, . . .)] e−y + h̄11. (5.59)

Using (5.59), (5.47), and (5.58) one can calculate S1:

S1 =

∫ ∞
−∞

∂FL

∂t
dx = −

∫ ∞
−∞

∂K (1)
w

∂t
dx = −

∫ ∞
−∞

∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx. (5.60)

Thus we see that the terms S0 and S1 do balance each other and the total mass (fast +
slow) is conserved. The sum h̄1 +K (1)

w (x− t, T1, . . .) e−y is reminiscent of an injected jet
bringing out the surplus or shortage (depending on the sign of

∫ ∞
−∞ ∂

2h̄0/∂y∂T1|y=0 dx)
of the mass from the localized lowest-order disturbance.

5.7. Initial slow field h̄1I

The initial slow field h̄1I obeys the equation (see (5.43))

∇2h̄1I − h̄1I = Π1I + divR (1)vI . (5.61)

To obtain the boundary condition for (5.61) at y = 0 we use equation (5.45) ana-
logously to (3.20a). Since h̃1I = −h̄1I we have from (5.45):

h̄1I |y=0 =
1

2

∫ ∞
0

F̃
(1)
hI e−ydy −K (1)

w (x)− C (1)
hfI , (5.62)

where the function F̃
(1)
hI (see (5.18b)) is known because ṽ1I and ∂ṽ1/∂t|t=0 are given

by (5.10), (5.11). The function C
(1)
h in (5.45) is replaced by the sum C

(1)
h = K (1)

w
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(x − t, T1, . . .) + C
(1)
hf , where K (1)

w is the amplitude of the first-order Kelvin wave, and

C
(1)
hf is a known particular solution of the inhomogeneous equation (5.27). Again,

applying the condition (3.28) to K (1)
w one can determine either h̄1I |x=−∞,y=0 in the step

case of 〈h̄1I |y=0〉x in the periodic case, and then h̄1I |y=0 from equation (4.6) taken at

the initial moment. Given h̄1I |y=0 we can find from (5.62) the initial profile K (1)
w (x) of

the first-order Kelvin wave, and the field h̄1I from (5.61).
Thus the first-order splitting (4.2) is self-consistent for all initial conditions (2.9).

The algorithm in use provides the evolution equation for the lowest-order slow field
and the Kelvin waves, and a fast correction to the lowest-order fast component. The
evolution of the first correction to the slow field is determined at the third order of
the perturbation theory (cf. RZB).

6. Modified QG equation
The equation for the first-order slow motion is obtained in a manner similar to the

method used in § 3.3 of RZB. We write the third-order vorticity equation as

∂(ζ2 − h2)

∂t
+
∂(ζ1 − h1)

∂T1

+
∂Π0

∂T2

+
∂[u0(ζ1 − h1)]

∂x

+
∂[v0(ζ1 − h1)]

∂y
+
∂(u1Π0)

∂x
+
∂(v1Π0)

∂y
= 0, (6.1)

and average it in time applying (3.5). Using representations (3.3), (4.2) and properties
of the fast fields described in § § 3, 5 one arrives at

∂Π1

∂T1

+
∂Π0

∂T2

+
∂(ū0Π1)

∂x
+
∂(v̄0Π1)

∂y
+
∂(ū1Π0)

∂x
+
∂(v̄1Π0)

∂y
+
∂〈ũ0(ζ̃1 − h̃1)〉t

∂x
= 0. (6.2)

By virtue of (5.1c, g) the average 〈ũ0(ζ̃1 − h̃1)〉t is represented as

〈ũ0(ζ̃1 − h̃1)〉t = 〈ũ0R̃
(1)
s 〉t = −

〈
ũ0

∂Ũ0

∂x

〉
t

Π0. (6.3)

Since the fields ũ01, Ũ01 in (3.16a), (5.4a) consist of IG waves, decaying with increasing
time, equation (6.3) is reduced to the equation (see (3.16a), (3.23), and (5.4a))

〈ũ0(ζ̃1 − h̃1)〉t = CK e−2yΠ0, CK = 〈[K (0)
w (x− t, T1, . . .)]

2〉t. (6.4a, b)

The coefficient CK is zero for the step and localized initial conditions because in these
cases the Kelvin wave amplitude K (0)

w (x − t, T1, . . .) tends to zero as x → −∞ (see
(3.28)). But in the periodic case the averaging (3.5) gives

CK =
1

2π

∫ 2π

0

[K (0)
w (z, T1, . . .)]

2 dz. (6.5)

As readily follows from (5.37) the coefficient CK is conserved in time (at least, for
the time T1), and therefore it can be calculated directly from the initial Kelvin profile
(3.32a).

In other to obtain a closed equation for h̄0, h̄1 we use (4.4a, b, e, f ) to express Π1 as

Π1 =
∂v̄1

∂x
− ∂ū1

∂y
− h̄1 = ∇2h̄1 − h̄1 − 2J

(
∂h̄0

∂x
,
∂h̄0

∂y

)
. (6.6)
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With the help of (4.4a, b, e, f ) and the evolution (4.3) for Π0 = ∇2h̄0 − h̄0, equation
(6.2) takes the following form:

∂Π0

∂T2

+
∂

∂T1

(Π1 − ∇h̄0∇Π0 − h̄0Π0) + J(h̄0, Π1 − ∇h̄0∇Π0 − h̄0Π0)

+J

(
h̄1 − (∇h̄0)

2

2
+
CK

2
e−2y, Π0

)
= 0. (6.7)

Equation (6.7) describes a next-order correction to (4.3), which is necessary to take
into account the slow evolution of the balanced component of the flow for times
much longer than T1. One can combine the two equations by introducing a ‘full’ slow
elevation h̄ = h̄0 + εh̄1 (cf. RZB). The resulting equation (which will be referred to as
the modified quasi-geostrophic potential vorticity (MQGPV) equation) can be written
in the form of conservation of potential vorticity ΠM:

∂ΠM

∂T1

+ J

(
h̄− ε (∇h̄)

2

2
+ ε

CK

2
e−2y, ΠM

)
= 0, (6.8a)

ΠM = ∇2h̄− h̄− ε
[
h̄(∇2h̄− h̄) + ∇h̄∇(∇2h̄− h̄) + 2J

(
∂h̄

∂x
,
∂h̄

∂y

)]
. (6.8b)

Equation (6.8) is constructed in such a way that if the solution h̄ is represented as an
asymptotic multiple time-scales series,

h̄ = h̄0(x, y, T1, . . .) + εh̄1(x, y, T1, . . .) + · · · , (6.9)

then the equations for the corrections h̄0, h̄1 coincide with (4.3) and (6.7), respectively.
Obviously, (6.8) is valid up to terms O(ε2).

In the step and localized cases the coefficient CK is zero, and MQGPV equation
(6.8) coincides with the ‘improved’ QGPV equation derived in RZB. At the same time,
in the periodic case CK 6= 0 and the Kelvin wave makes a direct contribution to the
slow dynamics, the contribution depending on the initial conditions (2.2). This means,
generally, that in the presence of a boundary MQGPV equation (6.8) cannot be
correctly obtained by a direct expansion of (2.1a, b), (2.5) in ε assuming all variables
to depend on slow times only, as occurs in the case of an unbounded region (cf.
RZB).

The initial conditions for (6.8) are determined by the problem (3.35), (3.29) for h̄0I

and equation (5.61) with the corresponding boundary condition for h̄1I (see § 5.7).
The boundary conditions for (6.8) follow from (4.5), (4.6), and from the condition
analogous to (4.6) for the second-order slow field h̄2,

∂h̄2

∂x

∣∣∣∣
y=0

= −
(
∂ū1

∂T1

+
∂ū0

∂T2

+
∂

∂x
(ū0ū1)

)
y=0

, (6.10)

which is derived in the same way as (4.6). In the periodic and step cases we have
from (4.6)

h̄1|y=0 =

∫
∂2h̄0

∂y ∂T1

∣∣∣∣
y=0

dx− ū2
0

2

∣∣∣∣
y=0

+ h̄1B(T1, . . .), (6.11)

where the first term on the right-hand side of (6.11) is the anti-derivative of
∂2h̄0/∂y ∂T1|y=0 and h̄1B is obtained from the condition of boundedness of h̄2
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using (6.10) and (4.4b):〈(
∂ū1

∂T1

+
∂ū0

∂T2

)
y=0

〉
x

= −
〈(

∂2h̄1

∂y ∂T1

+
∂2h̄0

∂y∂T2

)
y=0

〉
x

= 0. (6.12)

Combining (4.5) with (6.11), and (4.7) with (6.12) we obtain the boundary conditions[
h̄− ε

∫
∂2h̄

∂y∂T1

dx+
ε

2

(
∂h̄

∂y

)2
]
y=0

= h̄B(T1, . . .), (6.13a)

〈
∂2h̄

∂y ∂T1

∣∣∣∣
y=0

〉
x

= 0. (6.13b)

Here (6.13b) serves to determine the unknown function h̄B in (6.13a). In the localized
case (6.13b) is satisfied identically and h̄B = 0 in (6.13a).

The MQGPV equation (6.8) together with the initial condition h̄I = h̄0I + εh̄1I

and the boundary conditions (6.13) allows us to determine the evolution of the slow
component up to non-dimensional times O(ε−2).

7. Summary and conclusion
We have described the process of nonlinear geostrophic adjustment in the barotropic

RSW model on a half-plane bounded by a rigid wall, applying the multiple-time-
scale perturbation theory developed in RZB and based on the assumption of a
small Rossby number. Different initial states (all localized in the y – perpendicular to
the wall – direction) were considered: periodic in x, ‘step’-like (tending to along-wall
rectilinear flows as x→ ±∞), and localized ones.

Generally, the geostrophic adjustment considered is similar to that in the unbounded
plane examined in RZB. In all cases the initial perturbation is split in a unique way
into slow and fast components evolving with characteristic time scales f−1 and (εf)−1,
respectively. The slow component is not influenced by the fast one, at least for times
t 6 (εf)−1, and remains close to geostrophic balance. The fast component consists
mainly of linear IG waves rapidly propagating outward from the initial disturbance
and Kelvin waves confined near the boundary. Like the unbounded case considered
in RZB, the nonlinear interactions of IG waves with each other, with the slow
component and with the Kelvin waves result in only a small correction to the fast
field.

At the same time, the presence of the boundary brings a number of new effects into
the geostrophic adjustment process. First, Kelvin waves arise which propagate along
the boundary in such a way that the boundary is on the right in the direction of
propagation. The theory provides simple formulae allowing us to construct the initial
profile of the Kelvin wave given arbitrary initial conditions. The lowest-order fields of
the theory describe the process of linear geostrophic adjustment of an arbitrary initial
state on the bounded half-plane. With increasing time the Kelvin wave profile slowly
distorts, the distortion being due to the Kelvin wave nonlinear self-interaction and
being described by the simple-wave equation. The resulting evolution of the initial
Kelvin wave profile can be characterized as fast propagation, with slow breaking.

Probably the most important result of this work is that the presence of Kelvin
waves does not prevent the fast–slow splitting in spite of the fact that (unlike IG
waves, see RZB) the frequency gap between the Kelvin waves and slow motion is
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absent (i.e. Kelvin waves with arbitrarily small frequencies can exist). The possibility
of splitting is explained by the special structure of the Kelvin waves in each case
considered here. For the periodic initial conditions the Kelvin wave profile is also
periodic but it has zero mean, which physically corresponds to the absence of a
zero-frequency harmonic in the Kelvin wave spectrum. For the localized and step-like
initial conditions such harmonics can be present in the Kelvin wave spectrum, but
the shape of its profile is such that the Kelvin wave field rapidly decays at a fixed
spatial point when the Kelvin wave propagates off this point. One can assume that
the Kelvin wave breaking does not affect the slow mode in the localized and step-like
cases since it happens far from the main regions of ‘slow variability’. For the periodic
motion the effect of the Kelvin wave breaking on the geostrophic mode should be
examined more thoroughly. An important role in this case can be played by the
non-conservation of potential vorticity across a Kelvin shock, revealed in numerical
experiments by Helfrich, Kuo & Pratt (1999).

Evolution of the slow motion on times t 6 (εf)−1 is governed by the well-known
quasi-geostrophic potential vorticity equation for the elevation h̄0. The theory provides
an algorithm to determine the initial slow and fast fields to any order in ε. The
boundary condition used in this non-viscous model is the no-flux condition on the
rigid wall. Being formulated in terms of h̄0, this condition contains an arbitrary
function h̄0B(T1, . . .) which is constant along the boundary but depends on the slow
time (e.g. Kamenkovich & Reznik 1978; Pedlosky 1987).

To remove this uncertainty the conservation of along-boundary circulation is used
(e.g. Pedlosky 1987). If the fast component is absent then the slow circulation is as-
sumed to be conserved, this conservation providing the energy and mass conservation
of the lowest-order slow motion. However, if the initial conditions are not balanced,
so that the fast component is present, then the total circulation (fast+slow) should be
conserved. The question is whether the fast and slow circulations are conserved sep-
arately. Our analysis demonstrates that this is the case for the periodic and step-like
initial conditions.

The situation for localized initial conditions is somewhat more complicated. The
lowest-order slow motion in this case is also localized and the elevation h̄0 is zero at
the boundary, i.e. the problem for h̄0 is well-defined without using the conservation of
slow circulation. Moreover, a simple analysis shows that, generally, the lowest-order
circulation and, therefore, the total mass of slow localized motion are not conserved.
Conservation of the total circulation and mass is provided by the first-order slow
correction h̄1 and Kelvin wave K (1)

w e−y . Separately, neither h̄1, nor the Kelvin wave
amplitude K (1)

w , are localized in x but the sum h̄1 + K (1)
w e−y is localized and is

reminiscent of an injected jet carrying the surplus, or shortage, of mass from the
localized lowest-order slow disturbance.

Note that Dorofeyev & Larichev (1992) met an analogous problem when con-
sidering the reflection of linear Rossby waves from the meridional boundary in the
framework of a shallow water model on the β-plane. They revealed that the total
mass of Rossby waves is not conserved, and the surplus or shortage of mass is
carried by fast Kelvin waves. Also, Helfrich & Pedlosky (1995) examined the QG
motion in periodic and unbounded channels and indicated that in the localized case
non-conservation of slow circulation results in radiation of Kelvin waves ‘emanating
from the local region’ of slow motion.

On longer times t 6 (ε2f)−1 the slow motion obeys the so-called modified quasi-
geostrophic potential vorticity (MQGPV) equation. The theory provides initial and
boundary conditions for this equation. The MQGPV equation coincides exactly with
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the ‘improved’ QGPV equation, derived in RZB, in the step-like and localized cases.
In the periodic case this equation contains an additional term due to the Kelvin-
wave self-interaction, this term depending on the initial Kelvin wave profile. This
means, generally, that in the presence of a boundary the MQGPV equation cannot
be correctly obtained by a direct expansion of the RSW system in ε assuming all
variables to depend on slow times only, as occurs in the case of unbounded region.
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